Effects of low polymer content in a liquid-crystal microlens.

نویسندگان

  • T Nose
  • S Masuda
  • S Sato
  • J Li
  • L C Chien
  • P J Bos
چکیده

A small number of bifunctional monomers are mixed with a nematic liquid crystal (LC) and cured with a distributed electric field, which is produced by a circular-hole-patterned electrode structure. A gradient type of lens, that is, a LC microlens, is investigated for various polymer concentrations. Addition of 3% polymer is enough to freeze the gradient-index properties of the structure in the form of a convex lens, and a polymer-stabilized LC microlens is demonstrated. Although a lower concentration of polymer cannot hold the distribution properties in a curing process, it can maintain the variable focus as a nematic material can. The polymer networks can also eliminate the disclination line that usually appears and causes the lens in this type of LC device to deteriorate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets

A microlens array made of polymer/nanosized polymer-dispersed liquid crystal (nano-PDLC) is demonstrated. The polymer was first patterned into microlens array cavities on a planar substrate and the molded polymer cavities were filled with nano-PDLC material. The nano-PDLC-based microlens is optically transparent. The focal length of the microlens is electrically tunable and the response time is...

متن کامل

Liquid-crystal microlens arrays using patterned polymer networks.

A real-time dynamically tunable-focus microlens array made from a polymer-liquid-crystal (LC) composite is demonstrated. The polymer was first patterned in microlens array cavities by lamination, and the LC-monomer mixture was then injected to the molded polymer cavities and finally stabilized by UV light-induced networks. Using this new fabrication method, we demonstrated a lens with a spheric...

متن کامل

Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials.

Anisotropic phase separation has been used to fabricate an electrically switchable microlens array from nematic liquid crystals. Nematic liquid-crystal-based microlens arrays have been built with diameters of approximately 400 microm and natural focal lengths as small as 1.6 mm. The focal length of each microlens in the array can be changed in milliseconds by an applied electric field. These de...

متن کامل

Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time.

We report a polymer-stabilized liquid crystal (LC) microlens array with a large dynamic range and fast response time. The top substrate has a planar indium-tin oxide (ITO) electrode, while the bottom substrate has two patterned ITO electrodes for generating a fringing field and uniform longitudinal field. The fringing field is utilized to create the desired gradient refractive index profile in ...

متن کامل

Fast-response liquid crystal lens for 3D displays

Three-dimensional (3D) display has become an increasingly important technology trend for information display applications. Dozens of different 3D display solutions have been proposed. The autostereoscopic 3D display based on lenticular microlens array is a promising approach, and fast-switching microlens array enables this system to display both 3D and conventional 2D images. Here we report two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 1997